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Computational fluid dynamics, with the aid of the supercomputer 
development are becoming in the matured stage both for the physi - 
cal research problems and the practical engineering problems. Cur- 
rently, a method handling complex body configurations and increas- 
ing the accuracy of simulations are two of the important topics in 
the CFD research. In the present paper, a new zonal method is 
proposed to solve both these problems. The method is an extension 
of the FSA (fortified solution algorithm for generality, originally 
called FNS, fortified Navier-Stokes) zonal method that the present 
author proposed in the past to improve the local accuracy of the 
f low field to be simulated. The FSA concept is used as an interface 
strategy and both overset and slightly overlapped zonal methods 
can be treated in a similar manner. The multi-block method can 
also be incorporated. Implementation of this idea into the existing 
explicit and implicit codes are easy and the treatment of complex 
body configurations and the improvement of local grid resolutions 
become enabled with a slight modification of existing conventional 
program codes. The idea may be considered to fall into the category 
of the Chimera method, but it has some advantages. The test case 
and some of the applications are given. They indicate that the pres- 
ent unified zonal method can be an effective CFD analytical tool for 
complex f low physics and complex body configurations. ©1s95 
Academic Press, lnc, 

INTRODUCTION 

Computational fluid dynamics (CFD) is now used for a wide 
variety of problems. However, there are still many obstacles 
to overcome before the CFD truly becomes a feasible tool for 
engineering design problems as well as physical findings. One 
of the obstacles is how to handle complex flow configurations. 
As the flow field to be simulated becomes more and more 
complicated, even the sophisticated grid generation computer 
codes cannot supply reasonable grids that are adequate for the 
flow simulations. One strategy is to adopt an unstructured grid 
concept [1, 2]. Discretization of the flow field is much easier 
and the geometrical adaptability can be improved. Under the 
concept of the structured grid, so-called zonal methods may be 
help for this, The Chimera method developed by Steger and 
his group [3, 4] is a good Candidate. This type of approach using 
the overset grid concept allows us to create a computational grid 
for each body component and thus alleviate the burden of 
creating the computational grid over a complex body configu- 
ration. 
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One of the other obstacles is the accuracy enhancement. So 
far as discretization methods such as finite difference or finite 
volume methods are concerned, computed solutions become 
more accurate as the number of the grid points are increased. 
Quantitative data is necessary when CFD is used for practical 
problems, and a large number of grid points are required to 
assure the reliability of the simulation data. Since the computer 
memory is critically restricted, it is necessary to improve the 
grid resolution without increasing the number of grid points. 
Grid adaptation may be a solution. Local grid resolution can 
be improved by adopting the solution-adaptive gridding tech- 
nique [5, 6] without increasing the total number of grid points. 
Another option may be local grid enrichment [7, 8]. In addition 
tO the original grid, a locally defined, finer grid is created 
and overlapped or overlaid on the region of interest of the 
original grid. 

To tackle both these two obstacles, we propose a unified 
zonal method based on the fortified solution algorithm (FSA 
zonal approach). The concept is similar to the Chimera method 
but has some advantages as will be shown later. To illustrate 
how the present FSA zonal method is organized, one of the 
problems to be used later as an application example is picked 
up and its schematic picture is shown in Fig. 1. The problem 
is a simulation of the flow field induced by a train moving into 
a tunnel. The flow field consists of (1) the region in front of 
the tunnel entrance, (2) the region inside the tunnel, (3) the 
region outside of the tunnel exit. Besides, the additional zonal 
grid that surrounds the train is prepared. This grid moves with 
the train. The train grid is overlaid onto the other three zonal 
grids. The region outside of the tunnel and inside the tunnel 
are connected with several grid points overlapped at the inter- 
face. As will be shown later, high-order accuracy can be main- 
tained since the grid points in the overlapped region coincide 
with each other. The aerodynamic forces that act on the train 
are important to be analyzed, but also important is the propaga- 
tion of strong pressure waves induced by the train entrance. 
To capture these relatively weak compression waves, another 
zone having finer grid distribution is created and this zone 
moves with the speed of the compression waves. Here again, 
the overset moving grid concept is used. 

The FSA zonal method can treat several zonal strategies that 
appear in this example in the same manner. To some problems, 
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OUTER REGION OF TUNNEL 

TRAIN TUNNEL 

FIG. 1. Schematic picture of the flow field induced by a train moving into a tunnel. 

a slightly overlapped grid concept is easy to apply. To some 
problems, an overset grid concept may be easier. The multi- 
block method [9], where the body geometry is mapped onto 
the rectangular-shaped blocks in the computational domain, 
may be convenient for some problems. The FSA zonal method 
can treat all these approaches under the same concept. In the 
next section, the formulation of the FSA zonal method is re- 
viewed before showing the application examples. 

F O R T I F I E D  S O L U T I O N  A L G O R I T H M  A N D  T H E  

D I S C R E T I Z A T I O N  M E T H O D  

The governing equations under consideration are the un- 
steady Navier-Stokes or Euler equations written under the gen- 
eralized coordinate system (~:, 77). 
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FIG. 2. FSA zonal procedure for the overlaid grid. 
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FIG.  4. FSA zonal procedure for the multi-block grid. 

coordinate transformation. The pressure, density, and the veloc- 
ity components are related to the energy for an ideal gas by 

P = (7 - l)[e - ~u-  + 02)]. (2) 

where ~- is non-dimensional time, Q is a vector for conservative 
variables,/~ and P are the flux vectors, and/~o and Po are the 
viscous flux vectors defined as 

I'1 r"l 1 pu 1 p u U + ~ . ~ P  

0 = - J [ P e V J  ' E=~IPVU+L (e+p)U"PI'J 

I 1 puV + "oxP 
P :  I °vv + 

L (e + p)V J 

[°1 F°l 1 s¢~,~ + ~,,'Z~.,, I "rh'r,~ + "q>.T., 

Here, only two-dimensional equations are considered to explain 
the implementation of the FSA concept. Extension to the three- 
dimensional equations is straightforward and some of the appli- 
cation examples will be shown. 

The FSA took the basic concept from the idea of the fortified 
Navier-Stokes (FNS) approach and, hence, the present method 
was originally called the FNS zonal method. The FNS concept 
itself (not the FNS zonal method) was originally developed by 
Van Dalsem and Steger [10] to improve the performance of 
Navier-Stokes algorithms by using fast auxiliary algorithms 
that solve subsets of  the Navier-Stokes equations. In the FNS 
approach, solutions to the subset equations are used to add 
forcing terms to the Navier-Stokes algorithm in the appropriate 
flow regions. Van Dalsem and Steger used a boundary layer 
algorithm as subset equations, and the drag was accurately 
predicted with about an order-of-magnitude savings in com- 
puter time. The potential payoff  of this approach is an improve- 
ment of both the efficiency and the accuracy of a given Navier-  
Stokes algorithm. The following is the concept of fortified 
Navier-Stokes approach. 

In the FNS approach, the Navier-Stokes equations are modi- 
fied to include the forcing term as 

U and V are contravariant velocity vectors and 

2 2 
~-x, = -~ ~(2u~ - v,), 7 ,  = -~/.~(2Vy- U,) 

"r, = %x =/x(u~ + v,) 

~, = Z,xu + ~',v + KT~, ~, = "ry~u + %v + K L,; 

A¢ 

~:x, ~,., rh, and r/y are metric terms that appear due to the FIG. 5. Updated solution for the moderate X. 
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FIG. 6. Computational grid for the simulation of Blasius solutions. 
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8¢(2 + O~(~ - ~ )  + O.(P - fo) = X( (2 I -  (2). (3) 

The switching parameter X is set to be sufficiently large, com- 
pared to all the other terms in the region, where the solution 
(2I is available by the subset equations, and zero outside the 
region. For X >> 1, the added source term simply forces (2 = 
(2/; otherwise it blends (2 with (2j. When X = 0, the equations 
go back to the ordinary Navier-Stokes equations. 

The solution algorithm for the Navier-Stokes equations 
should be modified so that the forcing terms are treated properly 
in the solution process. In the case of  simple explicit time 
integrations, a finite difference expression of the Eq. (3) on a 
delta form can be written as 

I(1 + h x ) ( ( )  "+' - (2") 

= - h [ O g ( ~  - ~ )  + c3.(P - Po) + X ( ( 2 I -  (2")].  
(4) 

Here, h is an integration time step size. The superscripts n 
indicate the level of  the time step. The source term is easily 
treated implicitly. When X = 0, this reduces to the standard 
algorithm. If  X is sufficiently large, the algorithm reduces 
simply to (2"+~ = (2f. Thus, in the region that X is set to 
be large, the Navier-Stokes (or Euler) algorithm is turned 
off  and the solution (2I is "fort if ied" there. Note that positive 
diagonal terms are implicitly added when X is large. Obvi- 
ously, this has an effect of  improving the stability of  the algo- 
rithm. 

Modification is almost the same for implicit time integration 
schemes. It is simply to change the 1 matrix to the I(1 + h x )  
matrix with the consideration that X can become large without 
concern for the large factorization errors. In the case of the 
LU-ADI factorization time integration algorithm that is used 
in many of the following examples, the modification can be 
written as follows. The LU-ADI algorithm uses ADI-type fac- 
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torization first, and then it uses approximate LDU decomposi- 
tion for each ADI operator. In the original LU-ADI algorithm, 
each ADI operator, for instance, the operator for the sO-direction, 
can be written as, 

0 . 0 0  0 . 2 5  0 . 5 0  0 . 7 5  1 . 0 0  1 .25  

FIG. 10. Zonal grid distribution for the delta wing simulation. 

I + hoe,4 --  Te(I - hA~ + h ~ A ~ - )  

(I + hlA¢lj)-'(l + hA~, + h~A~)T~' ,  
(5) 

where T¢ and T[ ~ are the right and left eigenmatrices, respec- 
tively. A¢ is the diagonal matrix of  the eigenvalues, and its 
positive and negative parts are defined as A~ = (A¢ ___ IA+I)/ 
2. 8~ and 8~ are forward and backward finite difference opera- 
tors. Usually, first-order differencing is used. The operator de- 
fined in Eq. (5) is modified to add the forcing term as 

T~(I(1 + hx) - hA~ + h&~A~)(l(1 + hx) + hlAdj)- '  

(I(1 + hx) + hA~, + h~A~)T~' .  
(6) 

When X is zero, Eq. (6) becomes Eq. (5). By putting the inver- 
sion of I(1 + h X) between each ADI operator to avoid the 
large factorization errors, ~"+ t = Q~ is realized when X is large. 
The modification of the right-hand side is just to add source 
terms like Eq. (4). The fortified feature can be similarly imple- 
mented into many of the implicit time integration algorithms 
straightforwardly. 

Using this FNS concept, the present author proposed a FNS 
zonal method to locally increase the number of  grid points 
to enhance the accuracy of the vortical flow simulations [7]. 
Although the FNS was developed for the Navier-Stokes equa- 
tions, it can be applied to any governing equations as can 
be imagined. Therefore, it is now called the fortified solution 
algorithm for generality and is considered to be a tool not only 
to increase the local grid points but also to handle complex 
flow configurations even though the concept itself does not 
change. The FSA zonal method utilizes the FNS concept above 
for the transformation of  the information of one zone to another. 
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The basic equations are discretized with the finite difference 
fashion. The LU-ADI time integration algorithm [11] is used 
for the steady state problems, and the two step explicit time 
integration algorithm is used for the unsteady wave-propagation 
problems• In the right-hand side, convective terms are evaluated 
using the flux difference splitting by Roe [12]. The MUSCL 
interpolation is used for the higher-order extension. All the 
details about the solution algorithm except the treatment of the 
fortified source terms shown above can be found in Ref. [11]. 

It should be noted that the forcing solution ~)I can be a 
solution of any formula. It can be an analytical or experimental 
solution if available. New boundary conditions can be intro- 
duced in the computational region using the FSA when choosing 
the forcing region not to be an area but to be a line (in the three- 
dimensional case, not a volume but a surface). For instance, Van 
Dalsem and Steger solved a jet impingement problem [13]. 

U N I F I E D  Z O N A L  M E T H O D  B A S E D  O N  T H E  F S A  

CONCEPT 

Using the modified equations shown above, the FSA zonal 
method is defined. Figure 2 shows the schematic picture of the 
overset zonal grid. Zone 1 is prepared to solve the global 
region. Zone 2, a small region having finer grid distributions 

is prepared, for instance, to enhance the local grid resolution. 
or it may be prepared to improve the geometry adaptability. In 
the case of a train moving into a tunnel, zone 2 corresponds 
to a local moving grid surrounding the train. Close-up views 
of the zone 2 boundary are attached in Fig. 2 for the following 
description of the FSA treatment• Let us assume that the bound- 
ary conditions are given explicitly and the solution process 
starts at the next points from the boundary. 

At each time step, zone 2 is solved first. X values are set to 
be sufficiently large for the outermost two grid points (denoted 
as filled circles and triangles) as is shown in Fig. 2. Qivariables 
are specified there by ~) of zone 1 in the previous time step. 
Namely, the variables for the filled marks in Fig. 2 are given 
by the interpolation of the solution at the surrounding grid 
points in zone 1 obtained at previous time step. Filled circles 
can be treated as a boundary condition or just fortified without 
giving any boundary conditions. X values are set to zero inside 
of zone 2 (open triangles in Fig. 2). Then Fortified equations, 
Eq. (3) are solved. All the grid points denoted by the open 
triangles are actually solved even though the solution process 
starts from the points next to the boundary just as in a regular 
program. Next, zone 1 is solved using the fortified Navier-  
Stokes equations. X values are now set to be sufficiently large 
inside the subset zone 2 (denoted as filled triangles) and ~)i in 



UNIFIED ZONAL METHOD DEVELOPMENT 99 

a b ,~ 

d 

0 . 0  0 .1  0 . 2  0 . 3  0 . 4  0 . 5  

\ 

x \ \ \ \ 1 
\ L • , • • ~ \ ~ \ \ \ 

d- \ . . . . . .  . . . . \ \  \ \ \ \ \ 

~ . . . . . . . .  \\ \ \ \ \ \ 

. . . .  "~ \ \ " ,  "x \ 

o , . . . . . . . .  \ . . \ \ \  \ , \  

; : : : : : : z ; . . . .  ~ / / / / /  / / 

. # # 1 1 /  1 i 

, ¢ - , , ( , i , 

O.O0 0.05 0 .10  O.IS 0.20 0.; '5 0.30 0.35 

j 

0.6 0.7 

FIG. 12. Computed result obtained only with the global base grid: (a) density contour plots; (b) velocity vector plots. 

this zone (inside the frame region) is specified by the solution 
that has just been obtained inside zone 2. Outside zone 2, X 
values are zero. Solving the fortified equations, Eq.(3) the global 
region is solved with the zone 2 solution overlaid onto it in 
the region having large X values. The solution process does 
not change but only open triangles are solved in reality. The 

process is repeated at each time step until the convergence is 
obtained for both zones for the steady-state problems. In case 
of unsteady flow problems, there exists time lag and the effect 
should be studied further, but the research so far indicated 
that the solution is reliable so far as the time step is taken 
to be small. 

/ ,  ~// / / / / 

FIG. 13. Computational grid (seven slightly overlapped zones). FIG. 14. Computed Mach number contour plots. 
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The process is similar in the case of the slightly overlapped 
zonal grid. When the computational grid points in the over- 
lapped region coincide with each other, three-points overlap- 
ping keeps the third-order accuracy. Figure 3 shows the inter- 
face of the overlapped grid. When solving zone 1, the filled 
~ircle points become the boundary. The X values are set to be 
large along the line one point inside (filled triangles). In other 
words, the 0 value is -fort i f ied" to be 01, which is the value 
,~btained in zone 2. Thus, 0 is actually solved inside the third 
point (open triangle) from the boundary, even though the solu- 
tion process starts at the second point as usual. Two neighboring 
points are always available for both sides at any point, and this 
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The computational grids go through the body boundary and 
several grid points are located in the body geometry. It is 
necessary to let the solution process know which points corre- 
spond to the body boundary and inside the body. In the FSA 
zonal approach. we define x values to be sufficiently large at 
the body boundary (denoted as tilled triangles) so that the 0 
values are not updated there. As the 0 values inside the body 
region (denoted as tilled squares) should not be used for the 
computation. the x values are specifed to be negatively large 
inside the body region. Flags are defined and inserted in the 
MUSCL interpolation process so that the following condition 
is maintained. If the grid points having negative x values are 
included in the grid points to be used for the MUSCL interpola- 
tion. the interpolation automatically goes down to first order 
without using those grid points. Thus, the MUSCL interpolation 
reduces to first order at the grid points just outside of the body 
boundary (denoted as open squares). 

FIG. 22. Compured schlieren photograph hased on the simulated result. 

TEST PROBLEMS 

The presence of the forcing terms basically blends different 
solution sets together when moderate x values are used. Since 
both solution sets are reasonable solutions. they never contami- 
nate the solution, Let us go back to Eq. (4). Define A& as 

AQ, = -h(d,(p - f?,,) + iJ,,(F - P,.))“; (7) 

A& is the solution increment that would be obtained by a 
regular explicit time integration without any forcing terms. Also 
detine AQ, as 

where ho, is the solution increment for the forcing terms that 
would always give us o”-’ = 0,. 

Using these two variables. Eq. (4) can be rewritten as 

Ao= 
A& + IrxAi), 

/(I +/Ix) 

As illustrated in Fig. 5, the solution increment hi) for the 
blended equations is a linear combination of the two solutions. 
A& and A(&. A& b ecomes A& when x = 0. and A0 becomes 
Ao, when x * I. When x is moderate. the solution of the FSA 
equations becomes a linear combination of these two solutions. 
The same estimation is possible for the implicit time integra- 
tions. Therefore. forcing terms would not contaminate the solu- 
tions. 

To confirm this, a simple example is taken. Blasius solutions 
for the viscous flow over a flat plate is computed with two 
zones, one for the global coarse grid and the other for the local 
fine grid near the flat plate. The outer boundary of the local 
line grid is located somewhere in the boundary layer. When 
solving the local fine grid, the solution of the global zone at 
the previous time step is given at the outer boundary of the 
local tine grid. When solving the global zone, the solution 
inside the local fine grid zone is fortified by the fine-grid solution 
by specifying large x values. The x values are basically set to 
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FIG.  23. Computational grid for the three-dimensional train enlr.,, problem. 

he 10", but to check the effect of different X values, computa- 
lions with X to be 0 and 102 were tested. Figure 6 shows 
Lvpical grid distributions used in this study: 101 grid points 
'are distributed streamwisely for all the cases. In the normal 
direction, the number of the grid points for each zone and the 
Mcation of the interface(outer boundary of the local fine grid) 
are parametrically changed. Two results are shown here among 
Hlem. Figures 7(a)-(c) show the solution for the case with 21 
u i d  points in the global and 16 points in the six-times finer 
h~cal grid. Each corresponds to each X values. When X is 10". 
the computed result of u velocity for each zone shows the same 
\alue within the local fine zone becat, se the solution for the 
global zone are fortified in this region. When x i s  O. the solutions 
tt~r the global zone and the local zone become independent. 
The solution for the global zone is just the solutions for the 
global grid without taking any effect of the solution in the local 
line grid. Small difference remains between the computed u 
\elocities [or each zone. but it may be difficult to notice in the 
Iigure. The same is true for X = 10". 

The second case has 11 points in the global and 31 points 
in the local fine grid. The local fine grid is six times finer also 
in this case. Same three valt, es of X are tested and the resultant 

u velocity distributions are shown in Figs. 8(a)-(c). In this case, 
the fine grid region covers most of the boundary layer. When 
X is O, the solution of the global zone is independent from the 
fine grid solution because no points are fortified. There occurs 
a small discrepancy between the line grid solution and global 
grid solution near the curvature of the profile. Since the solution 
in this region is [k~rtified tier the case of X = 10". all the coarse 
grid solution strictly agrees with the fine grid solutions. The 
solution for moderate X values stays between. 

In any of the computed restdts, the solutions were never 
contaminated even with the moderate X distributions. For a 
moderate X, the solution stayed between the non-fortified result 
and the fortified result. 

With changing the X values in the solution process dynami- 
cally, convergence to the steady state solution can be acceler- 
ated. Figure 9(a) shows the convergence history of the computa- 
tion for the supersonic flow over a blunt body. A small local 
fine grid is defined near the body surface in addition to the 
global relatively coarse grid. Although not shown here, the 
local fine grid is two times finer in the streamwise direction 
and three times finer in the normal direction to the body. The 
solid line in Fig. 9(a) is the history of the solution residual for 
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FI{.;. 2~1. T ime  scquellee tlf  the pressure conloLirs. 

the global zone when large X values are used to lk~riify the fine- 
grid solution onto the global grid. The dash line is the solution 
with X values to be very small. When specifying large X values, 
the residual gradually increases and shows a clear peak. On 
the other hand, the residual shows oscillatory behavior fl~r small 
X, and alter 800 iterations or so, the convergence is rather fast 
compared to the "fortified" case. The solutions for the global 
zone and local fine zone should agree each other in the overset 
region for consistency. The computation was tried where small 
X values are used in the initial stage and they are gradually 
increased as the iteration goes on. The result is shown as the 
thick dash line in Fig. 91a). The convergence is rather close to 
the "'non-fortified" case and may be more robust than the 
strongly fortified case. The convergence history for the local 
fine zone shows similar tendency as is shown in Fig. 9(b). 

The fortified case, so to speak, corresponds to the typical 
overset zonal method. The examples above illustrate that the 
forcing terms work properly and never contaminate the solution 
process ever with the moderate 3( distributions. In some of the 
steady state computations, flexibility of 3( values may help the 
stability and/or convergence. One thing to note is the relation 
between the fl)rtified solution algorithm and the Chimera ap- 

proach. In the Chimera approach, An /-blank table works ;is a 
switch to tell the computer program which zone the solution 
should be taken from. This is a 0-1 type switch which only 
enables on or off. The fortified solution algorithm also gives 
the switch but it is a gradual switch depending on the choice 
of X values. If X is taken to be only very large in one zone and 
zero in the other zone, it is an on-of f  switch. However, there 
is a possibility that X is taken to be moderately large, where 
the solution is a combination of two overset zones. This enables 
the gradual switching and thus sometimes alleviates the stability 
problem that occurs at the interface region of the two zones. 
Besides, it can be dynamically changed in the iteration process. 
In the global sense, the present fl3rtified solution algorithm can 
be considered to be one version of the Chimera-type zonal 
method, but has flexibility compared to the existing Chimera 
method. 

APPLICATION EXAMPLES 

The first example is a Navier-Stokes simulation of the two- 
dimensional conical flow over a delta wing. The freestream 
Mach number is 1.4, the angle of attack 14 ° and the Reynolds 
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number is 2 × 105. The zonal grid distribution is presented in 
Fig. 10. A small zone to resolve the flow feature of the leading- 
edge separation vortex is created in addition to the global zone. 
In this small zone, the computational grid is twice as dense in 
the circumferential direction and three times as dense in the 
radial direction as the grid in the global zone. Figures l l(a) 
and (b) show the computed density and velocity vector contour 
plots, respectively. Dashed lines denote the interface of both 
zones. The contour lines are continuous at the interface, which 
indicates that the FSA method treated the interface properly. 
For comparison, the same plots from the solution obtained only 
using the global zone are shown in Figs. 12 (a) and (b). The 
same contour levels are used for fair comparison. The effect 
of the grid resolution enhancement is obviously observed from 
the clear definition of the rolling-up shear layer and the size 
of the secondary separation bubble near the leading edge. A 
bow shock wave exists outside of the plotted region as the 
freestream is supersonic. In the iteration process, this bow shock 
wave is created at the body and moves outward until the position 
is settled. In the present FSA method, the bow shock wave 
passed through the zonal interface smoothly. Three-dimen- 
sional delta wing computation as well as some of the additional 
two-dimensional computations can be found in Ref. [7]. 

The second example is a two-dimensional supersonic intake 
simulation [14]. In this intake model, a bleed chamber is 
attached in the top of the intake model to decrease the total- 
pressure loss. The flow field is decomposed into seven slightly 
overlapped zones (see Fig. 13) and Navier-Stokes equations 
are used for the simulation. In this example, the overlap grids 
at the interface in each zone coincide with each other. As 
no interpolation process is necessary, high-order accuracy is 
maintained at the interface by simply specifying X distributions, 
which is one of the advantages of the FSA zonal interface 
scheme. 

Figure 14 shows the instantaneous Mach number contour 
plots. The inflow Mach number is 3.0. The intake is designed 
to have three shock waves to obtain the proper pressure recov- 
ery. The first oblique shock wave was generated from the first 

ramp, the second oblique shock wave from the cowl lip, and 
the final terminal normal shock wave at the throat. In this 
simulation, the pressure at the exit is not specified and only 
oblique shock waves appear and the terminal shock wave is 
not created in the duct. A complicated flow pattern is observed, 
especially in the bleed chamber. The flow inside the duct is 
still unsteady but almost settled and does not change in time. 
On the other hand, strong unsteadiness remains in the bleed 
chamber. The computed contours are continuous at all the inter- 
faces and indicate that the interface scheme does not cause 
any problems. 

The next example is a train moving into a tunnel. The flow 
field analysis is important for the design of high-speed trains 
under development in the world. The computational grid is 
shown in Fig. 15. As has already been explained in the Introduc- 
tion, there are five zones, two of which move. Some of the 
instantaneous density contour plots from the time evolution of 
the solution are presented in Figs. 16(a)-(d). Figures 16(a) and 
(b) are the view of the instantaneous pressure contour plots at 
the train entrance. Strong compressions and expansions act on 
the train. In Figs. 16(c) and (d), the pressure contours at later 
times are plotted to show the pressure wave propagations cre- 
ated in front of the train in the tunnel. The zonal method does 
not show any problems and is clearly useful for this simulation. 
More about the moving train simulation is presented in other 
papers [ 15, 16]. 

Another practical application is a blast wave simulation. This 
type of blast wave is created by a sudden explosion of the 
nuclear or chemical propellant etc. Since the blast wave energy 
is supplied only at the initial stage, the bJast wave becomes 
weakened as it propagates. Therefore, there is no danger if the 
populated area is located far enough from the center of explo- 
sion. Such a distance is called a safety distance. For the estima- 
tion of the safety distance, the blast wave strength should be 
accurately evaluated by the numerical simulation. The length 
scale is of the order of miles and the simulation has to capture 
the weak pressure wave of the order of 10 -~ psi level. Our 
experience indicated that the grid resolution had to be tremen- 
dously enhanced to resolve such weak pressure wave propaga- 
tion. However, an important phenomenon occurs within the 
restricted region which moves with the blast wave but, thus, 
the region that requires fine grid distribution is small. Here, to 
enhance the grid resolution near the frontal blast wave, the 
overlapped zonal grid that moves with the blast wave is used 
for the simulation. Figure 17 shows the schematic picture of 
the grid distributions at three time stages. In addition to the 
moving grid, one more zonal grid is prepared to capture the 
physical phenomenon near the center of the explosion. The 
overset moving grid does not necessarily align with the global 
grid. Figure 18 shows the result of this zonal grid compared 
with those of the two single-zone grids. Rapid increase of the 
pressure can be recognized in the zonal solution, whereas only 
a gradual increase can be observed in the single-zone solutions. 
More importantly, the pressure increase due to the blast wave 
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is much lower in the single-zone solutions due to the numerical 
dissipation. The zonal solution captures a frontal shock wave 
within a few grid points and shows a much sharper shock 
wave, although the total number of the grid points in this zonal 
computation is about ½ that of the finer single grid. Suppose 
that we used the solution by the single-zone computations that 
did not have sufficient grid resolution; the sudden pressure 
increase due to the frontal shock wave would be evaluated 
much smaller. Then, the safety distance would be estimated 
much longer, which is dangerous. Computational solutions are 

easily obtained, but obtaining the reliable solution is another 
story. The zonal method is really useful for obtaining accurate 
and reliable solutions for practical problems. The details and 
more practical applications including the effect of  the ground 
surface geometry are found in another paper [17]. 

The two examples above are unsteady flow simulations. Time 
derivative terms are included in the evaluation of  metrics for 
the coordinate transformation between the physical space and 
the computational space• The time derivative terms are evalu- 
ated by the first-order approximation. This did not cause any 
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problems on the two examples above, even when the local grid 
begins to move, but they should be carefully evaluated when 
the time step is relatively large and grid movement includes 
rapid acceleration. The other thing to note is the GCL (geometry 
conservation law). These terms should be evaluated so that 
change of the grid geometry does not violate the conservation 
law. The detail can be found in Refs. [18, 19]. 

The following two examples are three-dimensional prob- 
lems. The first one is a three-dimensional supersonic flow over 
a wing-fuselage combination [20]. The body configuration is 
an AGARD-B model used for the calibration of the wind 
tunnel at the ISAS (Institute of  Space and Astronautical 
Science). As is shown in Fig. 19, which is a schlieren 
photograph in the experiment (M~ = 2.0), the test model 
is supported by the sting from the rear portion. The flow 
qmulation was conducted including this sting. The flow field 
is divided into three portions as is shown in Fig. 20. The 
first portion is from the front part until the end of the wing, 
the second portion is the outer region of  the rear part, and 
the third portion is an inner region. The O-type cylindrical 
grid is used for all the zones, but interpolation is necessary 
to transfer the information through the interface, as is shown 
in Fig. 21. The total grid points number more than one 
million. Figure 22 shows the corresponding numerical result 
where the computed schlieren photograph is obtained by 
simulating the schlieren technique on the computed data [21]. 
The separated region at the sting junction is well simulated. 

The final example is a three-dimensional version of  the tunnel 
entry problem. Figure 23 shows several views of  the computa- 
tional grid for this problem. The total number of grid points is 
about 530,000. There are six zones. The main zones are the 
region before the tunnel, the region of  the tunnel, and the region 
~f the train. In addition, three more zones are created. One is 
the region between the bottom of  the train and the tunnel floor. 
This region is prepared for the topological view point. The 
~econd is the intermediate zone between the tunnel zone and 
the train zone. This zone moves with the train speed. Since this 
problem is unsteady, zone-to-zone interpolation is necessary at 
each time step and it is time consuming. As the computational 
grid in this zone has an x = const plane, as well as the tunnel 
grid, only two-dimensional-l ike interpolation is necessary be- 
tween this zone and the tunnel zone. As the intermediate zone 
moves with the train, the interpolation between this zone and 
the train zone is independent of  the train movement and can 
be prepared in advance. Using this intermediate zone, much 
computer time necessary for the interpolation at each time step 
is saved. The third zone is the so-called collar grid at the corner 
of the tunnel entrance. This zone avoids the singularity of  the 
grid at the corner. 

Some of the time sequence for the generation of  the 
compression wave in front of  the train is shown in Fig. 24. 
The compression waves that eventually becomes a "booming  
noise" at the exit are very one-dimensional,  although the 
flow field near the train body is very three-dimensional. 

Figure 25 shows the growth of  the pressure wave in terms 
of the pressure distribution along the x-axis. As time goes 
on, gradient of  the pressure in front of  the train becomes 
steeper. As the figure says, the pressure peak can be predicted 
by a simple quasi-one-dimensional simulation that only con- 
siders the time change of the cross sectional area. However, 
our experience also indicated that the dp/dt, which is a key 
parameter for the booming noise cannot be predicted by a one- 
dimensional simulation, and multi-dimensional simulations are 
necessary. The train shape, similar to the current Shinkan- 
sen train called " N o z o m i , "  was selected, since the pressure 
data on the tunnel wall obtained in the field measurement 
was available. Figure 26 is the time history of  the Cp at 
several points (shown on the sketch) on the tunnel wall. The 
agreement is pretty good when the many environmental 
effects in the field measurement are considered. 

CONCLUSIONS 

A unified zonal method was developed. Overset and overlap 
zonal methods are treated in the same way by adopting the 
interface scheme based on the FSA concept. The multi-block 
approach that is suitable for some problems can also be treated 
similarly under this concept. It has been shown that the interface 
scheme is simple and implementation of the present zonal 
method into existing implicit or explicit  single-zone codes is 
easy. Some of  the test cases showed that the FSA zonal method 
is more flexible than the existing overlaid zonal methods. Based 
on the application examples, it was shown that the developed 
unified zonal method can be an effective CFD tool for complex 
flow physics and complex body configurations. 
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